跳转到主要内容
  • 认证合作伙伴
  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
    • 注册产品
    • Register Your Product (USA & Canada Only)
  • 联系信息
  • U.S.A.
  • U.K.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
首页 ELGA LabWater
  • 产品
    • PURELAB
    • CENTRA
    • MEDICA
    • BIOPURE
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
    • 电化学
    • 质谱分析法
    • 遗传学
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • Knowledge
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 产品
    • PURELAB
    • CENTRA
    • MEDICA
      • Hubgrade
      • MEDICA BIOX
    • BIOPURE
    • ELGA 全产品系列
      • PURELAB® Classic
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • Hochleistungsflüssigkeitschromatographie (HPLC)
    • 电化学
    • 质谱分析法
    • 遗传学
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • Knowledge
    • 博客
      • Analytical Chemistry
      • Clinical & Pharma
      • Cool Science
      • Environment and sustainability
      • Life in the lab
      • Purelab product design
      • Science of the future
      • Water Purity
      • Water in the lab
    • 案例分析
      • 雅培诊断的南亚团队选用 ELGA MEDICA 系统
      • Beam Me Up, Scotty: PURELAB® Option Q Delivers Essential Ultra Pure Water
      • Argenta chooses DKSH New Zealand to deliver Ultrapure water in Animal Pharma
      • Clean Water for a Clean Future
      • LS Scientific & ELGA deliver UltraPure water to the NAFDAC Laboratory
      • Lifebrain Group chooses ELGA as water partner for new modern 24/7 PCR-COVID-19 laboratory in Vienna, Austria.
      • Critital Tests Benefit from PURELAB® Option Reliable Pure Water
      • DASA:巴西最大的医疗诊断公司
      • ELGA 帮助免疫血清学实验室最大程度地增加运行时间
      • Fondazione Telethon Continues to Choose ELGA Labwater as a Trusted Partner
      • 1+ 级超纯水对非专利药物开发的重要性
      • 城市综合医院为西门子 ADVIA® 分析仪选配 MEDICA® Pro
      • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
      • PURELAB® Option R Guarantees Pure Water for Leading Microfluidics Technology
      • PURELAB® Pulse Delivers Reliable Water Quality and Quantity for a Wide Range of Applications
      • PURELAB® flex:适合当今研究方法的理想培训系统
      • Powering Cutting-Edge Gene Research
      • Sichere Reinstwasserversorgung für präzise Produkttests
      • Zentrale Reinstwasser-Aufbereitung für Analyser
      • ELGA LabWater and Beckman Coulter Join Forces
      • Applied New Technologies Department Improves ICP, IC & HPLC Sample Turnaround Times with PURELAB®
      • 借助超纯水,解开南极的秘密
      • Advancing Genetic Technologies
      • Cross Infection Control: Pure and Simple
      • Researching effective new ways to prevent cardiovascular disease at the University of Columbia
    • 超纯水
    • 白皮书
      • HPLC 水纯度
      • HPLC 的制药应用
      • 降低临床风险
      • 可持续发展
  • U.S.A.
  • U.K.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • 页面操作员
  • 首页
  • Tracking Our Lives and Our Impact on the Environment via Our Waste
Analytical Chemistry

Tracking Our Lives and Our Impact on the Environment via Our Waste

28 6月 2021
- by Dr Paul Whitehead

Medical Waste

The availability of more and more sensitive multi-component analytical techniques has raised the possibility of monitoring human (and other) activities by analysis of collective waste.

A topical example is the potential detection of Covid 19 antibodies in waste as a means of early warning of an increase in cases in a locality1. Other substances sought include illicit drugs2 and caffeine, nicotine, flame retardants and plasticizers3. A more general application is illustrated by the recent work by Kadokami and colleagues4 who studied the levels of 484 chemicals including 162 pharmaceuticals and personal care products (PPCPs) in daily use.

Chemicals that are used domestically and in commercial and business properties are eventually discharged to the sewerage system and reach municipal wastewater treatment plants (WWTPs). Thus, the local release of such chemicals can be determined by examining their concentrations in the inflows and outflows of WWTPs. (an approach known as wastewater-based-epidemiology (WBE)). They sampled at eight waste treatment plants across Japan to obtain data on levels of these chemicals produced by various communities and any seasonal variations, to identify markers of sewage contamination and to assess the efficiencies of their removal during sewage treatment with a view of protecting the aquatic environment. The table summarises the range of materials sought and found.

Class

Number of Compounds Sought

Number of Compounds Detected

Annual Japan-wide load

 

 

In 

Out

ton/year

Pesticide

296

47

56

9.7

Pharmaceutical

156

82

88

1033.7

Personal Care Product

6

5

5

199.8

Consumer Product

12

9

5

554

Industrial Chemical

10

4

5

52.6

Others

4

3

2

228.7

Total

484

150

161

2078.6


24-h composite samples were collected at points before and after treatment from all eight sites four times over a year. Samples were stored cold and extracted the same day. The solid-phase extracts were washed with ultrapure water, dried by nitrogen and eluted with methanol and dichloromethane. Mixed internal and matrix standards were added and chemical concentrations were determined using LCQTOF-MS (quadrupole time-of-flight mass spectrometry). For 85% of the chemicals found the method detection limits were below 8 and 2 ng/L for inflow and outflow, respectively. The target compounds were identified using the mass accuracies of a precursor and product ions, their ratios, and retention times. Quantification of the identified target substance used six internal standards. An ELGA PURELAB Chorus 1 provided the ultrapure water used.

87 out of the 484 daily-use chemicals sought were detected in the inputs to the WWTPs with an average total concentration of 0.1 mg/L. Pharmaceuticals made up 50% of the total. The individual substances found at the highest concentrations were the pharmaceuticals metformin, theophylline and theobromine, the sweetner sucralose, the brightening agent  distyrylbiphenyl disulfonate (FB351) and the surfactant N,N-Dimethyldodecylamine N-oxide. Removal efficiencies in the WWTPs were low, at only 29% for pharmaceuticals and 20% for pesticides. Seasonal variations could be detected with the levels of sucralose, UV-filters and insecticides higher in the summer while ibuprofen and chlorpheniramine were higher in the winter. 22 substances were identified which could serve as markers for sewage contamination. 

Why Choose ELGA LabWater?

The work of Kadokami et al. illustrates perfectly the need for and the benefits of ultrapure water generated on-site by a water purification system designed to consistently produce pure water with undetectably low levels of a very wide and diverse range of impurities. Use of UPW is fundamental to the analytical sequence and the affect of any interfering impurity in it could be significantly amplified. Looking for nearly 500 different compounds, they could report with confidence on their absence or, when detected, quantify sub 10ng/L concentrations. They chose ELGA LabWater’s Chorus 1 because it provides a proven ultrapure water purification system with extremely low levels of all types of impurities that they could rely on.

References:

  1. Daughton, C.G., 2020. Wastewater surveillance for population-wide Covid-19: The present and future. Sci. Total Environ. 736, 139631.
  2. Bade, R., White, J.M., Nguyen, L., Tscharke, B.J., Mueller, J.F., O’Brien, J.W., Thomas, K.V., Gerber, C., 2020. Determining changes in new psychoactive substance use in Australia by wastewater analysis. Sci. Total Environ. 731, 139209.
  3. O’Brien, J.W., Thai, P.K., Brandsma, S.H., Leonards, P.E., Ort, C., Mueller, J.F., 2015. Wastewater analysis of census day samples to investigate per capita input of organophosphorus flame retardants and plasticizers into wastewater. Chemosphere 138, 328–334. doi: 10.1016/j.chemosphere.2015.06.014. 
  4. Kadokami, K., Miyawaki, T., Iwabuchi, K., Takagi, S., Adachi, F., Iida, H., Watanabe, K., Kosugi, Y., Suzuki, T., Nagahora, S., Tahara, R., Orihara, T. and Eguchi, A. 2021. Inflow and Outflow loads of 484 daily-use chemicals in wastewater treatment plants across Japan. Environmental Monitorinf and Contaminants Research, 1, 1-16

 

Dr Paul Whitehead 

After a BA in Chemistry at Oxford University, Paul focused his career on industrial applications of chemistry. He was awarded a PhD at Imperial College, London for developing a microwave-induced-plasma detector for gas chromatography. He spent the first half of his career managing the analytical support team at the Johnson Matthey Research/Technology Centre,specialising in the determination of precious metals and characterising applications such as car-exhaust catalysts and fuel cells. Subsequently, as Laboratory Manager in R&D for ELGA LabWater, he has been involved in introducing and developing the latest water purification technologies. He now acts as a consultant for ELGA.

Quest Download

PURELAB Quest

The only purifier on the market that dispenses all 3 types of science ready water from a compact, economical and easy to use system!

             Click Here To Find Out More

 

  • Enquiry
  • 获取报价
  • 预订演示
  • 联系获认证的合作伙伴

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

获取报价

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

预订演示

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Head Quarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
电话: +44 (0) 203 567 7300
传真:+44 (0) 203 567 7205

Elga LabWater 总部

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
电话: +44 (0) 203 567 7300
传真:+44 (0) 203 567 7205

案例研究

  • 雅培诊断
  • DASA 医学诊断
  • NeoDIN 医学研究所
  • 北斯塔福德郡 NHS 信托大学医院
  • Olsberg 职业技术学院

资源

  • 了解超纯水
  • 白皮书
  • 水纯化技术
  • 实验室应用
  • 水中杂质

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?
  • 语言
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Veolia 其他站点
    • Veolia
    • Veolia Fondation
    • Veolia Water Technologies

© VWS (UK) Ltd. 以 ELGA®LabWater 的名义经营业务。2022- 保留所有权利
ELGA 是 Veolia 旗下全球实验室用水品牌。

  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • 页面操作员
Elga Veolia
TOP

© 2017 ELGA Veolia