跳转到主要内容
  • 认证合作伙伴
  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
    • 注册产品
    • Register Your Product (USA & Canada Only)
  • 联系信息
  • U.S.A.
  • U.K.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
首页 ELGA LabWater
  • 产品
    • PURELAB
    • CENTRA
    • MEDICA
    • BIOPURE
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
    • 电化学
    • 质谱分析法
    • 遗传学
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • Knowledge
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 产品
    • PURELAB
    • CENTRA
    • MEDICA
      • Hubgrade
      • MEDICA BIOX
    • BIOPURE
    • ELGA 全产品系列
      • PURELAB® Classic
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • Hochleistungsflüssigkeitschromatographie (HPLC)
    • 电化学
    • 质谱分析法
    • 遗传学
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • Knowledge
    • 博客
      • Analytical Chemistry
      • Clinical & Pharma
      • Cool Science
      • Environment and sustainability
      • Life in the lab
      • Purelab product design
      • Science of the future
      • Water Purity
      • Water in the lab
    • 案例分析
      • 雅培诊断的南亚团队选用 ELGA MEDICA 系统
      • Beam Me Up, Scotty: PURELAB® Option Q Delivers Essential Ultra Pure Water
      • Argenta chooses DKSH New Zealand to deliver Ultrapure water in Animal Pharma
      • Clean Water for a Clean Future
      • LS Scientific & ELGA deliver UltraPure water to the NAFDAC Laboratory
      • Lifebrain Group chooses ELGA as water partner for new modern 24/7 PCR-COVID-19 laboratory in Vienna, Austria.
      • Critital Tests Benefit from PURELAB® Option Reliable Pure Water
      • DASA:巴西最大的医疗诊断公司
      • ELGA 帮助免疫血清学实验室最大程度地增加运行时间
      • Fondazione Telethon Continues to Choose ELGA Labwater as a Trusted Partner
      • 1+ 级超纯水对非专利药物开发的重要性
      • 城市综合医院为西门子 ADVIA® 分析仪选配 MEDICA® Pro
      • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
      • PURELAB® Option R Guarantees Pure Water for Leading Microfluidics Technology
      • PURELAB® Pulse Delivers Reliable Water Quality and Quantity for a Wide Range of Applications
      • PURELAB® flex:适合当今研究方法的理想培训系统
      • Powering Cutting-Edge Gene Research
      • Sichere Reinstwasserversorgung für präzise Produkttests
      • Zentrale Reinstwasser-Aufbereitung für Analyser
      • ELGA LabWater and Beckman Coulter Join Forces
      • Applied New Technologies Department Improves ICP, IC & HPLC Sample Turnaround Times with PURELAB®
      • 借助超纯水,解开南极的秘密
      • Advancing Genetic Technologies
      • Cross Infection Control: Pure and Simple
      • Researching effective new ways to prevent cardiovascular disease at the University of Columbia
    • 超纯水
    • 白皮书
      • HPLC 水纯度
      • HPLC 的制药应用
      • 降低临床风险
      • 可持续发展
  • U.S.A.
  • U.K.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • 页面操作员
  • 首页
  • Highly Efficient Solar Water Splitting Systems For Energy Supply - Switzerland
Environment & Sustainability
Analytical Chemistry

Highly Efficient Solar Water Splitting Systems For Energy Supply - Switzerland

8 11月 2021
- by ELGA Editorial Team

Scientist looking at atoms in the sun

Solar is an important renewable energy source, but it's intermittent nature means that an effective carrier or storage system is required.

Hydrogen production via solar water splitting is an appealing approach for meeting this demand and achieving carbon neutrality. Researchers at the École Polytechnique Fédérale de Lausanne in Switzerland, Nankai University and Central South University in China, and Uppsala University in Sweden, have used their expertise to develop an efficient, stable and cost-effective photosystem to split water into hydrogen and oxygen using sunlight.

The world’s increasing energy consumption has led to the fast depletion of fossil fuels and urged scientists to find a replacement that has no environmental effect. Renewable sources such as solar, hydroelectricity and wind have already been used, but their availability varies around the world, and the high cost of current systems limits widespread application. Hydrogen, which can be generated using water splitting by solar energy or other forms of renewable electricity, has been identified as an attractive candidate to solve these issues. However, designing a single efficient and cost-effective system for its generation, easy and safe storage and transportation, that enables instantaneous use for energy supply, has always been a challenge.

Many approaches for solar-initiated hydrogen generation have been explored. Water electrolysis driven by photovoltaics (PVs) has displayed the greatest efficiencies so far, with the highest solar-to-hydrogen (STH) conversion being 30 %. Many systems comprising solar cells in series and a wide range of electrodes made of different materials, including catalysts have been investigated. However, the scarcity and high cost of these – for example, semiconductors and metal-based catalysts – have limited their widespread use. Perovskite solar cells (PSCs) have recently emerged as an attractive contender for low-cost PVs, reaching a certified power conversion of 25.2 % while using a voltage of 1.23 V for driving water electrolysis at maximum power. Researchers at the École Polytechnique Fédérale de Lausanne, Nankai University, Central South University and Uppsala University have carefully studied and developed a water splitting system that sets a record for hydrogen (HER) and oxygen evolution reaction (OER) with earth abundant and inexpensive photoabsorbers.1

Sample Preparation and Analysis

All solutions – aqueous 0.5 M H2SO4 and 1 M KOH – used as the electrolyte and for preparation of nickel iron (NiFe)-layered double hydroxide (LDH) in this work were prepared with ELGA® ultrapure water of resistivity of 18.2 MΩ/cm from a PURELAB® system. Atomic layer deposition enabled uniform distribution of small platinum (Pt) nanoclusters onto three different substrates: commercial carbon cloth (CC), carbon cloth coated by a TiO2 layer (CC/TiO2) and TiC nanowire arrays grown on carbon cloth (CC/TiC). A modified protocol of a literature report was used to fabricate the NiFe-LDH by hydrothermal growth and for the preparation of the monolithic perovskite/silicon (Si) tandem solar cell.

The morphologies and microstructures of the as-prepared catalysts were examined by scanning (SEM) and transmission electron microscopes (TEM), X-ray diffraction (XRD) and photoelectron spectroscopy. Pt loading amount and electrochemical surface area (ECSA) of the titanium-based substrates, and the STH, were calculated using the standard equations. The electrochemical properties of these catalysts were tested using a computer-controlled potentiostat. The stability and performance of overall water splitting was characterised by chronoamperometry with or without applying a 100 mA external bias for 100 h, under chopped air mass (AM) 1.5G illumination.

The Results

Downsizing the Pt particles to a nanocluster – even single-atom scale – and to five times less loading than the commercial Pt on carbon catalyst was found to be highly desirable for cost efficiency of the catalytic reaction. Ti-based substrates with high ECSA offer a strong metal-support interaction, which plays a critical role in enhancing the activity and stability of the Pt nanocluster catalysts. Combining this with the NiFe-layered double hydroxide for HER and OER using a monolithic perovskite/Si tandem solar cell for the first time achieved an STH conversion of 18.7 % for the overall system under standard AM 1.5 G illumination. Overall, the work demonstrates an efficient solar water splitting system with earth-abundant light-harvesting material and effective electrocatalysts.

Future Applications

Future development will aim to address the main challenge of stabilising the perovskite photoabsorber and electrolyser. This can be achieved by using existing techniques and novel substrates that enhance the binding of catalysts in both acidic and basic electrolytes. The development of these features is necessary for scaling up this water-splitting technology and for its widespread use around the world.

Why Choose ELGA LabWater in Switzerland?

The presence of impurities in laboratory water can be a major problem in research experiments, and can seriously compromise results. ELGA LabWater has been a trusted name in pure and ultrapure water since 1937. We believe in providing you with water purification solutions that can meet a wide range of needs and applications, backed by excellent service and support. For more information on our Type I ultrapure water systems, check out our PURELAB Quest, PURELAB Chorus 1 Complete and our PURELAB flex models.

Contact our swiss partners today!

Resources:
1)  Gao, J et al. 2019. Solar water splitting with perovskite/silicon tandem cell and TiC-supported Pt nanocluster electrocatalyst. Joule 3(12):2930-2941.

 

Download our Going Green Report Now

Are lab water impurities compromising your research on environmental water contaminants?

Learn how fellow reserachers are contributing to the fight against water contaminants

              Download your copy of the full report here

 

  • Enquiry
  • 获取报价
  • 预订演示
  • 联系获认证的合作伙伴

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

获取报价

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

预订演示

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Headquarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
电话: +44 (0) 203 567 7300
传真:+44 (0) 203 567 7205

Elga LabWater 总部

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
电话: +44 (0) 203 567 7300
传真:+44 (0) 203 567 7205

案例研究

  • 雅培诊断
  • DASA 医学诊断
  • NeoDIN 医学研究所
  • 北斯塔福德郡 NHS 信托大学医院
  • Olsberg 职业技术学院

资源

  • 了解超纯水
  • 白皮书
  • 水纯化技术
  • 实验室应用
  • 水中杂质

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?
  • 语言
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Veolia 其他站点
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies

© VWS (UK) Ltd. 以 ELGA®LabWater 的名义经营业务。2022- 保留所有权利
ELGA 是 Veolia 旗下全球实验室用水品牌。

  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • 页面操作员
Elga Veolia
TOP

© 2017 ELGA Veolia