跳转到主要内容
  • 认证合作伙伴
  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
    • 注册产品
    • Register Your Product (USA & Canada Only)
  • 联系信息
  • English
  • Deutsch
  • Español
  • Français
  • Italiano
  • Português
  • 日本語
首页 ELGA LabWater
  • 产品
    • PURELAB
    • CENTRA
    • MEDICA
    • BIOPURE
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • Knowledge
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 产品
    • PURELAB
      • PURELAB® flex 1 & 2
      • PURELAB® flex 3 & 4
    • CENTRA
      • CENTRA® 60/120
      • CENTRA® RDS
      • CENTRA® R200
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® EDI 15/30
      • MEDICA® Pro EDI 60/120
      • MEDICA® Pro-LPS
      • MEDICA® Pro-R 和 Pro-RE
      • MEDICA® R200
    • BIOPURE
      • BIOPURE 7/15
      • BIOPURE 60/120
      • BIOPURE 200/300/600
    • ELGA 全产品系列
      • PURELAB® Classic
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • Knowledge
    • 博客
      • Analytical Chemistry
      • Clinical & Pharma
      • Cool Science
      • Environment and sustainability
      • Life in the lab
      • Purelab product design
      • Science of the future
      • Water Purity
      • Water in the lab
    • 案例分析
      • 雅培诊断的南亚团队选用 ELGA MEDICA 系统
      • Beam Me Up, Scotty: PURELAB® Option Q Delivers Essential Ultra Pure Water
      • Clean Water for a Clean Future
      • Critital Tests Benefit from PURELAB® Option Reliable Pure Water
      • DASA:巴西最大的医疗诊断公司
      • ELGA 帮助免疫血清学实验室最大程度地增加运行时间
      • Fondazione Telethon Continues to Choose ELGA Labwater as a Trusted Partner
      • 1+ 级超纯水对非专利药物开发的重要性
      • 城市综合医院为西门子 ADVIA® 分析仪选配 MEDICA® Pro
      • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
      • PURELAB® Option R Guarantees Pure Water for Leading Microfluidics Technology
      • PURELAB® Pulse Delivers Reliable Water Quality and Quantity for a Wide Range of Applications
      • PURELAB® flex:适合当今研究方法的理想培训系统
      • Powering Cutting-Edge Gene Research
      • Sichere Reinstwasserversorgung für präzise Produkttests
      • Zentrale Reinstwasser-Aufbereitung für Analyser
      • ELGA LabWater and Beckman Coulter Join Forces
      • Applied New Technologies Department Improves ICP, IC & HPLC Sample Turnaround Times with PURELAB®
      • 借助超纯水,解开南极的秘密
      • Advancing Genetic Technologies
      • Cross Infection Control: Pure and Simple
      • Researching effective new ways to prevent cardiovascular disease at the University of Columbia
    • 超纯水
    • 白皮书
      • HPLC 水纯度
      • HPLC 的制药应用
      • 降低临床风险
      • 可持续发展
  • English
  • Deutsch
  • Español
  • Français
  • Italiano
  • Português
  • 日本語
  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • 页面操作员
  • 首页
  • Node
  • Challenges in the Purification of Drinking Water Part 2
Analytical Chemistry
Water Purity

Challenges in the Purification of Drinking Water Part 2

22 2月 2021
- by Dr Paul Whitehead

Drinking water 2

Transformation Products (TPs) from Water Treatment

As described in last weeks blog, one key role in making water “fit to drink” is ensuring that the concentrations of any toxic compounds formed when organics in water react in the environment are reduced to safe levels. This blog discusses some recent work on new compounds formed during potable water purification itself. 

The processes used in purifying drinking water and their effectiveness at removing contaminants are carefully monitored, optimized and validated . However, reactions are rarely complete1,2 and the products produced when contaminants are treated by processes such as hydrolysis, photolysis and oxidation are more elusive and, in general, are not known or controlled. These can differ greatly in character from the parent pollutants; they can be more toxic and more difficult to remove3,4 and can be formed from organic pollutants through both biological and technological processes. 

Andrea Brunner and colleagues5 have carried out lab-scale experiments to monitor TP formation from carbamazepine, clofibric acid and metolachlor, 3 pollutants widely found in drinking water sources, when subject to rapid sand filtration and ozonation. Spiked drinking water was recirculated for five days through a sand filter or exposed to a counter-current ozone flow for several minutes. Samples were analysed using a Vanquish HPLC system feeding an electrospray ionization source on a Tribrid Orbitrap Fusion mass spectrometer. Ultrapure water from an ELGA PURELAB Chorus I was used for the blanks and standards and for the preparation of the eluents. Minimising any risk of contamination is critical when looking to unambiguously identify ultra-low levels of TPs.

Purification of drinking water

A range of sophisticated data analysis techniques were applied to the HRMS data produced including peak picking, componentization, chlorine pattern scoring, suspect screening and automatic MS2 fragment searches. 

Relatively little changes were observed with sand filtration, while a wide range of TPs were found after ozonation: 214 metachlor TPs, 194 from clofibric acid and 85 from carbamazepine. Even with the range of data processing used it still proved difficult to identify positively the majority of TPs detected. 

This work illustrates the possible presence of a wide range of other impurities in potable water that could be generated during water purification and need to proactively evaluate them as part of control and monitoring systems.

Reference:

  1. P.E. Stackelberg, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, A.K. Henderson, D.B Reissman “Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant” Sci. Total Environ., 329 (2004) 99-113
  2. B.A. Wols, C.H.M. Hofman-Caris, D.J.H. Harmsen, E.F. Beerendonk “Degradation of 40 selected pharmaceuticals by UV/H2O2” Water Res., 47 (2013) 5876-5888
  3. A.A. Bletsou, J. Jeon, J. Hollender, E. Archontaki, N.S. Thomaidis “Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment” Trac. Trends Anal. Chem., 66 (2015) 32-44
  4. B.I. Escher, K. Fenner “Recent advances in environmental risk assessment of transformation products” Environ. Sci. Technol. 45 (2011) 3835-3847
  5. A.M. Brunner, D. Vughs, W. Siegers, C. Bertelkamp, R. Hofman-Caris, A. Kolkman, T. ter Laak “Monitoring transformation product formation in the drinking water treatments rapid sand filtration and ozonation” Chemosphere 214 (2019) 801-11

 

Dr Paul Whitehead 

After a BA in Chemistry at Oxford University, Paul focused his career on industrial applications of chemistry. He was awarded a PhD at Imperial College, London for developing a microwave-induced-plasma detector for gas chromatography. He spent the first half of his career managing the analytical support team at the Johnson Matthey Research/Technology Centre,specialising in the determination of precious metals and characterising applications such as car-exhaust catalysts and fuel cells. Subsequently, as Laboratory Manager in R&D for ELGA LabWater, he has been involved in introducing and developing the latest water purification technologies. He now acts as a consultant for ELGA.

 

Quest Download

PURELAB Quest

The only purifier on the market that dispenses all 3 types of science ready water from a compact, economical and easy to use system!

             Click Here To Find Out More

 

  • Enquiry
  • 获取报价
  • 预订演示
  • 联系获认证的合作伙伴

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

获取报价

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

预订演示

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

Elga LabWater 总部

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
电话: +44 (0) 203 567 7300
传真:+44 (0) 203 567 7205

超纯水专家

  • 支持和服务
  • 活动

案例研究

  • 雅培诊断
  • DASA 医学诊断
  • NeoDIN 医学研究所
  • 北斯塔福德郡 NHS 信托大学医院
  • Olsberg 职业技术学院

资源

  • 了解超纯水
  • 白皮书
  • 水纯化技术
  • 实验室应用
  • 水中杂质

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?
  • 语言
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Veolia 其他站点
    • Veolia
    • Veolia Fondation
    • Veolia Water Technologies

© VWS (UK) Ltd. 以 ELGA®LabWater 的名义经营业务。2021- 保留所有权利
ELGA 是 Veolia 旗下全球实验室用水品牌。

  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • 页面操作员
Elga Veolia
TOP

© 2017 ELGA Veolia